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We study the magnetic behavior and in particular the spin magnetization of an interacting two-dimensional
electron gas in an in-plane magnetic field. The ground-state energy of the system is constructed using the
correlation energy based on the recent quantum Monte Carlo (QMC) simulations as a function of density, spin
polarization, and applied magnetic field. The critical magnetic field to fully spin polarize the system is obtained
as a function of the electron density. The spin polarization as a function of the applied field (less than the
critical field) for various densities is calculated. When the QMC parametrization is employed, we find that the
two-dimensional electron system undergoes a first-order phase transition to a ferromagnetic state in the regions
0<r,<7 and 20<ry<25, where r, is the usual density parameter. For 7 <<r;<<20 our calculations indicate a

second-order transition unlike approximate theories.
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I. INTRODUCTION

The ground-state properties of the two-dimensional
electron-gas (2DEG) model are important not only for their
technological implications but also from the point of view of
many-body physics.! In the last decade there has been a huge
amount of activity on the transport and thermodynamic prop-
erties of low-density 2DEG systems largely motivated by the
observed metal-insulator transition.” In particular, the spin
susceptibility of a 2DEG is of interest and many experimen-
tal studies are reported® ' on Si-metal-oxide-semiconductor
field-effect transistor (MOSFET) and GaAs based two-
dimensional (2D) electron systems. Irrespective of the mate-
rial details the spin susceptibility is found to be enhanced
with decreasing carrier density.!!

On the theoretical side, the ground-state energy of the
2DEG is most reliably assessed from quantum Monte Carlo
(QMC) simulations.'?!3 In particular, the recent simulations
predict a paramagnetic to ferromagnetic transition before the
eventual crystallization of electrons and provide an accurate
correlation energy in parametrized form. This allows the cal-
culation of other thermodynamic quantities of interest with-
out resorting to perturbation-theory approaches. Experimen-
tal observation of spontaneous spin polarization of a 2DEG
has been reported by Ghosh et al.'* and Winkler et al.'”
Recent spectroscopic measurements on the spin polarization
in dilute semimagnetic quantum wells also shed some light
on the exchange-correlation effects in 2D electron systems.'®

In a recent paper Zhang and Das Sarma'” challenged the
interpretation of most spin-susceptibility measurements by
studying the spin-polarization effects in a 2DEG in the pres-
ence of an applied magnetic field. The paramagnetic to fer-
romagnetic transition in electron systems has long been of
interest'®!? and the recent experiments have revived further
theoretical activity!”-?°-?3 including a study on Dirac fermi-
ons in graphene.?*

Motivated by the recent experiments on 2DEG systems
with an in-plane magnetic field and the associated measure-
ments of thermodynamic quantities, in this paper we revisit
the calculation of spin-polarization effects taking advantage
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of the recent QMC simulation results'> which provide an
accurate correlation energy with density and spin-polari-
zation dependence. As the QMC simulations are performed
for a strictly 2DEG system at zero temperature, 7=0, we
consider a similar system ignoring the finite width of quan-
tum well structure. Thus, coupling of the magnetic field to
the orbital motion does not enter the picture. Because we do
not include any valley degeneracy effects, our calculations
should be more appropriate for GaAs based electron and hole
systems. The effects of finite width and disorder, treated per-
turbatively, on the spin susceptibility of a 2DEG have re-
cently been considered by De Palo et al.?> Comparing our
results with those of previous perturbation-theory based cal-
culations we find qualitative as well as quantitative differ-
ences.

The rest of this paper is organized as follows. In Sec. II
we provide the ground-state energy expression as a function
of electron density, spin-polarization parameter, and applied
magnetic field and outline our calculation of the critical field
at full spin polarization. In Sec. III we present our numerical
results and compare them with other theoretical approaches.
We conclude with a brief summary in Sec. IV.

II. MODEL AND THEORY

We consider a 2DEG with zero layer thickness in the
presence of uniform positive charges to ensure charge neu-
trality. At 7=0 the system is characterized by the following
two dimensionless parameters. The Wigner-Seitz radius r,
defined in terms of the density n and the effective Bohr ra-
dius aj by n=1/m(ayr,)% which is the average distance be-
tween the electrons in units of aj (Bohr radius includes the
band mass of electrons and the background dielectric con-
stant of the host semiconducting material). The spin polar-
ization is the ratio of the number of excess spin-up electrons
to the total number of electrons given by {=|n;—n,|/n. In the
former case the system is said to be unpolarized and one
talks about a paramagnetic state, whereas in the latter case,
the system is fully polarized and is called ferromagnetic. The
ratio of the average interaction energy to the average kinetic
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energy is also equal to rg; thus small r; values characterize
high-density and weakly interacting systems and large r, val-
ues characterize low-density and strongly interacting sys-
tems.

The total energy per particle in the presence of an in-plane
applied magnetic field B can be written in terms of the vari-
ables r,, {, and B as

E(rs’ LB) = Ek(rs’ g) + Ex(r.v» g) + Ec(rx’ {) + EZ(LB)’ (1)

where E(r,,0)=(1 -ng)/ri is the kinetic energy per particle
and E (ry,0)=—(4\2x/37r)[(1+0)**+(1-¢)*?] is the ex-
change energy in units of effective Rydberg (Ry). For the
correlation energy E,. we use two models. The first one is
given by the following parametrized expression from QMC
calculations of Attaccalite et al.:'3

E(ry0) = (P = 1)€9(r, 0) + aplry) + a1 (r) & + an(ry) &,
()
where
€9, =Er,0) - (1 + 352 + %ﬁ)Ex(rs,O), (3)
and
ai(rs) =Ai + (Birs + Cirf + Diri)
1
)@

3/2 2 3
EirS+FirS +GirS+Hirs

Xln(l +

The constants A;,...,H; in the functions «; (i=0,1,2) are
given in tabulated form by Attaccalite ef al.'> When an in-
plane magnetic field is applied to the 2DEG system, the in-
teraction of the magnetic field with the spin of the electrons
gives rise to Zeeman energy E,({,B)=-5ug{B (per particle),
where g is the effective band g factor and up is the Bohr
magneton.

In the absence of an external magnetic field the recent
QMC simulations predict spontaneous transition from a para-
magnetic state to a ferromagnetic state around r,=~25.5. Un-
like the situation?® in three dimensions, to the accuracy of
simulation results there is no partially polarized phase for the
entire range of densities. However, when an external mag-
netic field is applied it becomes possible to polarize the sys-
tem partially, and as the magnetic-field strength is further
increased, the system becomes fully polarized at a critical
value of the magnetic field. This critical or polarizing field
can easily be found for a noninteracting system whose en-
ergy is simply given by Ey(r,,¢,B)=(1+{)/r>~(guy/2)BL.
The total energy for a noninteracting system with respect to
the spin polarization { is a parabola, the minimum of which
for small B (B<B,,) occurs at {;=guzr-B/4. The critical
field B, for the noninteracting case is found by setting £
=1, yielding B,y=4(Ry)/(gupr?)=2€5/(gup) in which e is
the Fermi energy of the unpolarized system. For higher fields
the energy minimum is always at {;=1.

In the case of interacting particles, assuming the energy
has a local minimum as a function of {, we proceed in the
same way to find the critical field. The optimum polarization
" is again found by minimizing the total energy. The result-
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FIG. 1. (Color online) The critical field B,. to fully polarize the
2DEG as a function of r, in various approximations, Hartree-Fock
(dotted line), RPA (dashed line), and QMC correlation energy (solid
line).

ing polarization *(r,,B) that is now a function of r, and
applied magnetic field, when set equal to unity, yields the
critical field B, which can be written as

2 9\2-8

(e Prs—1)r+ (a; + Zaz)rf. (5)

In the above expression the first two terms on the right-hand
side give the Hartree-Fock approximation (HFA) and the re-
maining terms follow from the parametrized form of the cor-
relation energy E. from the QMC simulation.

The above calculation assumes that the minimum of total
energy at the critical field B, occurs at {*=1. However, this is
not always the case as a number of previous works based on
the random-phase approximation (RPA) have already
shown.!”-1822 If the minimum occurs at {*=1 the above for-
mulas are valid and spin polarization approaches unity con-
tinuously yielding a second-order transition to the fully po-
larized state. As will be discussed in detail later, for some
values of r, the form of the energy curve is fundamentally
different from that of the noninteracting case. At the critical
field B, the total energy as a function of polarization has two
minima. One of them is at {*=1 and the other one is at 0
< {"<1. Since just beyond the critical field the global mini-
mum occurs at {*=1, there is a discrete jump in the spin
polarization and the transition is first order.

III. RESULTS AND DISCUSSION

We now present our results based on the above con-
structed ground-state energy of a 2DEG with an in-plane
magnetic field. We have calculated the minimum of the
ground-state energy with respect to spin polarization for vari-
ous values of r, and B. The search for the critical field em-
ployed here is purely numerical and is an incremental search.
The magnetic field is increased until the minimum of the
energy occurs at {=1.

The critical field B, that fully polarizes the electron gas as
a function of r, in various theoretical models is plotted in
Fig. 1. At points above each curve in the r-B plane the
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FIG. 2. (Color online) Ground-state energy as a function of spin
polarization ¢ at r,=2, 10, and 25 for various applied magnetic-field
values (from top to bottom, B=0, 0.25B,, 0.5B., 0.75B,, B,., and
1.25B,.).

system is fully polarized. The critical field vanishes around
ri~25.5 when the QMC correlation energy of Attaccalite
et al.'? is used, at which density of the system undergoes a
spontaneous transition to the ferromagnetic state. Also given
in the same figure are the corresponding curves for the HFA
and RPA which show quantitatively different behavior from
the present results including correlation effects.

The total-energy curves at increasing magnetic field as a
function of the spin polarization for the two models of cor-
relation energy at three representative values of r, are shown
in Fig. 2. In this figure, we display the results using QMC
correlation energy of Attaccalite et al.'® At zero field the
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FIG. 3. (Color online) The discontinuous jump in spin polariza-
tion AZ* at B, as a function of r,. Dotted, dashed, and solid lines
represent HFA, RPA, and QMC correlation energy, respectively.

minimum of the total energy is at {=0 for r,=25.5. As the
magnetic field is increased the minimum shifts to nonzero
values of {. For instance, at r;=2 and r =25 the total energy
has two minima when the field reaches the critical value B,
at the corresponding density (for r,=2 the local minimum
and the minimum at {=1 are very close and not visible on
this scale). Above B, the energy has one minimum at the end
point {=1; there is an abrupt change in { at B,.. For r;=10, on
the other hand, we find that the local minimum moves to the
right as the field increases but continuously goes to {=1 at
B..
The jump in the spin polarization at the critical field B,
denoted by A" is shown in Fig. 3. For the QMC correlation
energy in the ranges 0 <r;<<7 and 20<r,<25 we find that
there is a discrete jump in polarization which is equal to the
distance between the two minima of energy. The transition to
the polarized state is first order when A" # 0. Such a phase
transition is known as Bloch ferromagnetism. For intermedi-
ate values of r; we find that the polarization becomes unity
continuously as the magnetic field is increased. In this region
the phase transition to the ferromagnetic state appears to be
of Stoner type (i.e., second order). In contrast, approximate
theories such as HFA and RPA yield a finite A" in the r
regions of their applicability. The qualitatively different be-
havior found for 7<r;<<20 implying a continuous phase
transition to the ferromagnetic state is a direct result of our
use of the parametrized QMC correlation energy. It is known
that the energy differences between the polarized states are
diminishingly small. Thus, the results of our calculations are
limited by the accuracy of the parametrized QMC expres-
sion. The small jump in polarization for 0 <r <7 is intrigu-
ing. To further check the robustness of this prediction we
have used the correlation energy expression recently pro-
posed by Chesi and Giuliani.?’ In this work differences from
QMC results in spin polarized energies are reported. Al-
though the Gell-Mann-Bruckner-type calculation of Chesi
and Giuliani? is only valid for r,— 0, we have found that a
small nonzero A" up to r,= 1. Thus, it appears that for small
r, there is a weak first-order transition to the ferromagnetic
state.
The spin polarization {* that minimizes the ground-state
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FIG. 4. (Color online) Spin polarization {* (the value of { which
minimizes the ground-state energy at a given magnetic field) as a
function of (a) the B field for several r, values and (b) as a function
of r, for several B-field values. Solid, dashed, and dotted lines in-
dicate B=B.(r;=5), B=B_.(r,=10), and B=B(r;=20), respectively.

energy is shown in Fig. 4 as a function of B field at fixed
density and as a function of r, at constant B. For those values
of r; shown in Fig. 4(a) there is a jump before * becomes
unity at B, consistent with the results presented in Fig. 3
where A">0. As A"=0 for 7<r;<20, we find that {*(B)
curves approach unity smoothly in this region. In Fig. 4(b)
we show * as a function of r, at the constant magnetic-field
values of B.(r,=5), B.(r,=10), and B.(r,=10). Thus the plot-
ted curves exhibit the onset of full spin polarization as the
density is decreased. Note also that nonzero values of A"
consistent with those shown in Fig. 3 are clearly visible.

Another quantity of interest which can be accessed ex-
perimentally is the magnetic susceptibility of the system de-
fined as x=n(gup/2)dL*/dB. Tt is common practice to look
at the susceptibility normalized by its value y, for the non-
interacting system (Pauli susceptibility), i.e., )(Ozn,u%/ €, SO
that the ratio x/ xo=(ge€p/2up) dL*1B is formed. Using the
analytic expressions for the various terms of the ground-state
energy, we find

-1
|

(6)

Thus, once having obtained {* numerically, we can readily
calculate the normalized susceptibility.

X 2|2 \E 1/ 1/ &ZEC
S==| 5 -—[(+ +(1-¢ + —
it e SR (R R e
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The zero-field (linear) susceptibility has been calculated
by Attaccalite et al.'> On the other hand, the spin suscepti-
bility at finite B (nonlinear susceptibility) should be quanti-
tatively different from calculations based on perturbation
theory (HFA, RPA). The strong dependence on r, at finite
fields is already evident in the magnetization curves of {*(B)
shown in Fig. 4.

Zhang and Das Sarma'” pointed out that spin susceptibil-
ity measured by magnetoresistance experiments>~" through
the polarization field B, does not coincide either with the
linear or the nonlinear spin susceptibility, casting some doubt
on the interpretation of experiments. The spin susceptibility
is extracted from the measured B, that is related to a model
dependence of {*(B) which is typically linear. If the QMC
parametrization gives a correct description with AZ*=0 for a
range of r, values, the assumption about the slope of * vs B
appears to be reasonable. This coincides with the region 0
<r,<20. In fact, since most experiments’~' are performed
at r,= 10 experimental procedure seems to be valid. How-
ever, when A{*>0 as in the case large r, region, then the
experimental error would be considerable.

We also mention the recently reported thermodynamic
measurements by Kravchenko et al.?® of the magnetization in
a 2DEG. Spin susceptibility obtained by such measurements
should provide an independent check of the same quantity
from transport measurements. A related quantity, thermody-
namic compressibility, also yields interesting features when
the 2DEG is subjected to an in-plane magnetic field as we
have discussed elsewhere.?

IV. SUMMARY AND CONCLUDING REMARKS

We have considered the effect of in-plane magnetic field
on the ground-state energy and magnetic properties of a
2DEG for a wide range of densities. To this purpose we have
used the recently available QMC simulation based correla-
tion energy as a function of r; and ¢. Thus, our calculations
should provide quantitatively more accurate results com-
pared to the previously employed approximate methods. In-
terestingly, from the QMC correlation energy calculations we
find that under an externally applied magnetic field the 2D
electron system undergoes a first-order phase transition to a
ferromagnetic state in the range 0<<r;<<7 and 20<<r,<25.
That is, as the magnetic field is increased from just below B,
to above B,, the polarization minimizing the total energy {*
jumps from a finite value to unity abruptly. On the other
hand, in the range 7 <r <20, {* reaches unity continuously
which suggests a second-order phase transition. These find-
ings are in qualitative difference with the predictions of HFA
and RPA based calculations!” which yield a first-order phase
transition to the ferromagnetic state in the whole range of
densities corresponding to 0<r,<35.5.

There are several directions with which our calculations
can be extended. To make better contact with experiments it
would be useful to take the finite quantum well width effects
into account. This would require a reliable calculation of the
exchange and correlation energies as a function of r,, ¢, and
parameters describing the finite width of electron layer,
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which presently are not available from QMC simulations.
Furthermore, disorder effects are also likely to significantly
affect the spin susceptibility and compressibility. It would be
interesting to include the disorder effects in a realistic way
when a direct comparison to the experiments is made.
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